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Radiative effects in a plane wave moving along a magnetic 
field 

V N Baier and A I Milstein 
Institute of Nuclear Physics, Novosibirsk, USSR 

Received 21 June 1977, in final form 26 September 1977 

Abstract. Radiative effects are considered when a scalar particle interacts with the field of 
an intense plane wave of a general type propagating along a magnetic field. Within the 
framework of operator technique the mass operator of a particle is calculated. A detailed 
analysis in the case of a circularly polarised monochromatic wave is carried out. The 
behaviour of particles in the vicinity of the cyclotron resonance is analysed. 

1. Introduction 

In recent years the behaviour of particles in electromagnetic fields of complex 
configuration has been widely discussed. One field of such a type is given by an 
electromagnetic plane wave propagating along a magnetic field. The Klein-Gordon 
and Dirac equations in such a field were solved by Redmond (1965) who also made a 
simple analysis of the classical motion of a particle. The Green functions of the scalar 
and spinor particles for this case were found by Batalin and Fradkin (1970) using the 
functional integration technique. The production of a pair of particles by a photon in 
such a field was discussed by Oleinik (1971). 

In the field configuration under consideration a very interesting resonant situation 
is realised: at the cyclotron resonance point, where the wave frequency coincides with 
the cyclotron frequency of motion of a particle in the magnetic field with the Doppler 
shift taken into account, the energy transfer of a particle to a wave and vice versu can 
take place, and this may be used in physical applications. One such application was 
discussed by Kolomensky and Lebedev (1963), and Voronin and Kolomensky (1964). 
They considered the possibility of accelerating charged particles in such a field, 
naturally, within the framework of the classical theory. The resonant amplification of 
an electromagnetic wave by a particle is also possible (Baier and Milstein 1977). Such 
an effect occurs in free electron lasers, and we have recently been informed about the 
construction of such lasers (Deacon et a1 1977). Therefore, the analysis presented 
below may be applied to a consistent theory of such lasers. A similar mechanism may 
be used, apparently, for damping transverse oscillations in the beams of charged 
particles. 

To consider the processes in external fields within the framework of quantum 
electrodynamics it is convenient to use the operator diagram technique developed for 
the case of a homogeneous electromagnetic field in the work by Baier et a1 (1975) and 
also for the case of an electromagnetic plane wave in the work by Baier et ul (1976). 
The method is based on the operator representation of the Green function of a 

297 



298 V N Baier and A I Milstein 

charged particle in the field with a subsequent disentanglement of operator expres- 
sions. Consideration of radiative effects in a given field is a considerably more 
complicated problem than that of the above cases and has not been attempted 
previously. In this paper it is solved with the help of the corresponding operator 
technique which turns out to be a very appropriate method in this case. Below the 
mass operator a scalar particle is found in the field of the configuration under 
consideration. This operator describes the main characteristics of behaviour of a 
charged particle and, at the same time, makes it possible to avoid some complications 
arising in the solution of the spinor particle problem which, it is assumed, is solved 
elsewhere. 

We shall describe the electromagnetic field under study by a potential 

d” = d” (Xll) + d” ( 4 )  (1) 
where 4 = K X ,  K X I I  = 0. Let us assume that the magnetic field is directed towards the 
third axis, along which the waves propagate; then 

d ’ ( X , , )  = -x2H, d”(4)= n f ; a l ( 4 ) + n g u 2 ( 4 ) .  (2) 
0 3  Here 4 = K X  = x --x and the vectors K ”  = go” +g:, n t  = gf,  n;  = gg are introduced, 

where gr are components of the metric tensor. 
Let us represent the electromagnetic field strength (1) in the form 

2 

9”” =F”’+ 1 f f :”a; (d) ,  f y = K ” n ; l - K K n f :  
k = l  

where FZ1 = H, and H is a magnetic field. 

2. Mass operator 

In the present approach the mass operator for the spin-0 particle can be represented 
as follows (Baier et a1 1975, equation (1.10)): 

where 9, = id, - e d ” ( e  > 0) .  Before the integration over k in (4) it is necessary to 
perform the transformation of the integrand taking account of the non-commutativity 
of an operator component 9,. Let us carry out a standard exponential parametrisa- 
tion of propagators: 

1 

= -%f s ds du e-isum2 exp{ i [ s~ (9 ’~ -29k) f sk~]} .  ( 5 )  
1 1 

k2 +ie (9’- k)’- m’+ie 

Using this representation it is possible to transform the mean value of operator (4) on 
the mass shell into the form: 

x exp[is(l - u)k2 - isum’] - i exp{is[(9 - k)’- m’]})). 

After substitution of parametrisation (5) into integral (4) both the exponential index 
and the coefficient of the exponential in the integrand contain variable k. We have 
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integrated by parts the terms containing B k  in the coefficient of the exponential in 
equation (6), thus enabling us to express (M“’) in a form where only the index of the 
exponential depends on k .  The mass operator also contains terms which do not 
depend on external field. These terms are not found in (6) because they are dropped 
in the regularisation. Thus, evaluation of an integral over k is reduced to the 
calculation of a value: 

Q(’)= d4k exp[isu(B - k)2 ]  exp[is(l- u ) k 2 ]  

= 5 d4k e-ikx exp(isu9’) eikX exp[is(l - u ) k 2 ]  

where the shift operator in momentum space is used: for some function f(B) the 
following takes place: e-ikxf(B) eikxf(B - k ) ,  [B”, Xu] = igwu. To calculate the integral 
(7) it is necessary to transform the operator expression exp(isuB2). This trans- 
formation (disentanglement), being one of the basic points in our consideration, is 
made in the appendix. In the calculation of integral (7) let us use the representation 
(A.12) for exp(isu9’). Integration over variables ko ,  k 3  may be carried out using the 
same method as Baier et a1 (1976). In this case, it is necessary to have the variables 

kd = i ( k o + k 3 ) ,  k r - 2 ( k o - k 3 ) .  -1 

Integration over k4 giving S(k ,  - upp), means that integration over kS is reduced to the 
substitution k,  + upp. Integration over the variables k’ ,  k 2  can be made following the 
method of Baier et a1 (1975). finally we get 

where we use the following notations? (see equations (A.4) and (A.6)): 
1 

q = x 1 A(qy) dy (cotan x +B),  7 = su(1- U), 

) 
a(x)=  tan-’( 1 -cos 2 x  

p = x - a ( x ) ,  
sin2x+[2x(l-u) /u]  ’ 

1 1 

A2(7y) dy - x  cotan x( A(7y) e-2Bxy dy)’], + b  
1 U 2  l - U 2  l - U  D = y[ sin2 x + x 2  (y) +-x sin 2x 

X U 

where x =useH, and matrix B””=F””/H. The mass operator (6) includes a 
combination P”Q“’9,. It is easy to verify that (cf equation (A.1)): 

(10) 
g”Q@)P =1 d(B2 - 9; ), Q“’] + BifQ(’’9~. 

t The branches of multiple-valued functions in equation (9) should be chosen in the same way as in Baier et 
a1 (1975). Here and below we extensively use the matrix form for the notation, e.g., ABq = A U B ” q , .  
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Taking this into account the problem is reduced to the calculation of a combination 

exp[i(B -q$p/eH] exp(iq8:)BIi exp(-iq&) exp[-i(B - q$p/eH] 

=q-A(q)+e-2Rp(Bll-q). (1 1) 

(12) 

Using (1 1) we have, on the mass shell, 

B@Q‘”B, ={m2+ieH sin 2p -$[(l -e-2R’)(B~~-g)+A(q)]2)Q(o). 

To calculate (M“)) (equation (6)) it is also necessary to find the second term in the 
large parentheses. It is not difficult to make sure that the integral {d4k from this 
expression is given by -iQ“’(u = 1) e-ism2. Substituting this result in (12) and (6) we 
obtain the mean (from the mass operator) value on the mass shell. The renor- 
malisation of this value is reduced to the subtraction of its value at the field 9,” = 0 
(see Baier et a1 1975, 1976). As a result we get the mean value of the renormalised 
mass operator for the spin-0 particle (M‘O’) = MI +M2 with 

x exp i(B - q l  - exp(i& - isum2)- m2 exp(-isu m 

where the integration contour passes below the real axis. The obtained expression 
(13) in the extreme case H = O(p = 0) is directly converted into the mean value of the 
mass operator in an electromagnetic plane wave field. (See Baier er a1 (1976), 
equation (2.22), where it should be taken into account that for the function p (2.13) 
one has (dp/d+) = 0.) The result following from (13) for a magnetic field in the limit 
U ~ , ~ = O  is a new representation of the mass operator in this field. After the trans- 
formation of the latter using integration by parts it is possible to show that this 
representation is the same as that previously obtained (see Baier er a1 1975, equation 
(2.41)). 

( e H  p ,  

3. Mean value of mass operator 

The solution of the Klein-Gordon equation for the field configuration under consi- 
deration was found by Redmond (1965). We represent it in the following form: 

where 

.rr, = id, - e&, (xll), 
A 5 = x 0 + x 3 ,  p t q n  = z q n ,  6, = eH(2n + l),  

-1 
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where H,, are the Hermite polynomials; for the sake of convenience we use x, y, z for 
the notations of vector components instead of xl, x2, x3, respectively. Using the 
above solution of the Klein-Gordon equation, equations (A.10), (A. 12) and also the 
relations 

p2qn = m'p,,, r i + n  = -bn+n, 

eiK"f(9j) e-iKn = f(B11- eFK), A K  = ed(rP)+eFK, 
1 

exp[iq (q - p)2] = exp(iq.sri) exp( -2iqp e2rF"y dy q) ei", (16) 

sin(2eHq) 
2eH , v = P 2 v + 2 h 2  [ ~ Y Z  ['dyl exp[2eFq(y2-yl)]eFp = p  

where f(iP11) is some function, q is a parameter and p = p(xll) is an arbitrary 4-vector, 
we come to the following expression for M I  (equation (13)): 

Here the following notation is introduced: 

U =  (1-e-2Bp)(A(q)-eFx), 

go = m2 + ieH sin 2p + 2b, sin2 p -$(A(q)- eFx)', 

3 = @-@(q)+@1 +@2, 

@ I =  -(,$ eH cotan p - T~ cotan eHq), Q2 = bn( *) 4 e H  

where x, T, U are 4-vectors, 4,, is given by equation (A. l l ) ,  @(q) by equation (A.13), 
and 4, @ are given by equation (9), i.e. 4 and 4,,, (0 and @(q) should be distinguished. 

For further calculations let us take into account that the function +,, satisfies the 
relation 

where U* = U* *ivy. Let us transform the operators e-ixn and eiw appearing in (17) as 
follows: 

eiTn = exp(i.r*.rr,) exp(iTYa,) exp(&"TY [mX, 7ry]) = exp(iT*.rr; +$eH7*TY) exp(iTy7ry). 
(20) 
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Note that exp(irYrry) is the shift operator in the y axis. Taking account of (19), (20) 
and also of the integral (Gradstein and Ryzhik 1962): 

+m 

e-"Hm(x +y)H,(x + z ) d x  = 2"&m!2n-mL~-m(-2y~)  (m<n)>,  (21) 
1-m 

where LL-;" are the Laguerre polynomials, let us carry out the integration over x ,  y : 

Here 

x* = xX * ixy, r* = r* f i r Y .  

For the remaining notation see equations (9) and (18). While averaging in M2 (see 
(13)) normalisation integrals appear, i.e.: 

Substituting the obtained results (22), (24) in (M'") = M1 +M2 we get the mean 
value of a mass operator of the scalar particle on the mass shell in an electromagnetic 
plane wave field of a general type propagated along the magnetic field H. To calculate 
an integral over 4 it is necessary to give an explicit form of the field. The case of a 
monochromatic wave will now be considered. 

4. Shift of quasi-energy 

To reveal the sense of the mean value of the mass operator in a time-dependent field 
let us consider the modified Klein-Gordon equation, proposed by Schwinger, with 
radiative corrections taken into account: 

(9: - p2 - m2 - M('))* = 0. (25) 
In the case when the potential is a periodic time function its solution can be represen- 
ted as follows: 

* = e-'"f(x, t )  (26) 
where E is the quasi-energy of a particle and f is the periodic function (with the same 
period). Let us represent the solution of equation (25 )  in zero order in the following 
form: 

v0 = e-"o'fo(x, t ) .  (27) 
Multiplying equation (25) on the left by 9: and integrating over the space coordinates 
we get 
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Let us evaluate the integral from (28) over a single period of time, bearing in mind 
that in the lowest order of perturbation theories the difference E -eo and M(O) are the 
values of the order a. Then discarding the higher-order term we findt 

where (Po) = fi 5 d4x (9: y09~) is a zero component of the mean kinetic momentum of 
a particle (at a given normalisation of wavefunctions). This result determines a 
physical sense of the mean value of the mass operator. Let us represent 

he  = Re he -fi W, (30) 
where W is the mean value over the period probability of radiation, by a particle in a 
given field per unit time. Substituting (30) into (29) we have 

5. The case of a monochromatic wave 

Let us now consider the case of a monochromatic wave. The elliptically polarised 
monochromatic plane wave can be described by a potential 

l1 + l2 cos w 4  + n: - l1 - l2 sin w 4 .  edw(4)=nY- 
2 2 

Helicity unit vectors prove to be very convenient for this case: 

Then BE = iE, Be* = -iE*. In these terms a vector K ( 4 )  (see (15)) for a field (32) has 
the following form: 

where v = wA/eH. Similarly a vector q (see (9)) is 

where 

x = sueH, y = wAq. 
x sin(x * Y )  e*iy - 1, c* = 
(x * y )  sin x 

According to the values found we may construct the vectors x and r in terms of which 
the answer is given (see (22)). Let us still represent an explicit form of the function CD 
using (13) and (9): 

X 
@.=- rs: v1+ 5; v2 + 5152 cos 2(w4 - y)V3] 4eH (37) 

t The shift of quasi-energy at the fixed quasi-momentum is considered. 
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where 

vl- Y (s in(x+y)siny ---1) x 
v2= V1(y+-y), x + y  x + y  y sinx 

sin 2y 
V,  = m ( y  - x  cotan x tan y). 

x - Y  

(38) 

The argument of the Laguerre polynomials is given by: 

where 

(40) 
) 

1 
sin(x + y) sin p -- sin@ + y) sin i &A(- l x  

sinx x + y  V + l  

n2 = nl(ll+ l z ,  y + -y, V + -VI* 

For the elliptically polarised wave the terms l 1 5 2  in the exponent index in (22) and in 
the argument of the Laguerre polynomials (see (39)) depend explicitly on 4, this 
dependence entering only as a linear function of cos 2(04 - y). Therefore, for the 
integration over 4 in (22) it is necessary to evaluate integrals of the type 

2.rr d" r n !  ds" 

where Zo is the modified Bessel function of the first kind. Using (41) one can obtain an 
explicit form of the integral over in (M'") =M1+M2 (see (22), (24)) for a mono- 
chromatic wave with elliptical polarisation. 

In the following we restrict ourselves to the analysis of the case of a circularly 
polarised wave l1 = l , l ~  = 0, the standard parameter of the wave intensity being 

(41) ea cOsz'Ln(u + b cos 2 4 )  d 4  = - -[(s - 1)" eSaZo(a +sb)] ,=~  

['= 12/4m2. (42) 

In this case the integrand in (22) is independent of 4; therefore, the integral over 4 is 
reduced to the normalisation integral. Thus, the mean value of a mass operator of the 
scalar particle in the field of a circularly polarised wave propagated along the magnetic 
field H is: 

a ds (M'") = -m2 .rr 7 { du exp(-isu2m2) [ -$j exp( ioc  - 9 - 11 

1 
+y exp(-ismz)( 1 - 4sm (43) 

where 

z = z o ~ ,  (e) + t2z1, 
Zo = 1 + 2i(H/Ho) sin 2p + 2(H/H0)(2n + 1) sin' p, 

z1 = 2 1 ~  -sin yI2~, , (e )+4i  sin p(zvLL(e)+N*L: (e ) ) ,  

(Po  = (2n + l)[x(l - U ) - p ] ,  

ac = a'+ t2a1, 

(44) 
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vxyu sin 2y - 
2(1+v)2 (x+y)( l+v)  - sin(x + y)- 

21mR 
l + v  -cotan plR) -- sin y], 

x sin(x +y)  eiy 
R = eip sin p ( z  

N=e"((R-siny)(R*-*), 
9 = 2 5  --, H~ (Im R)' 

l + v  H sin'p 

Here x = sueH, y = wAq, v = wA/eH and Ho = m2/e  ; for the remaining notation see 
(9). 

6. Extreme cases, cyclotron resonance 

The obtained result (43) gives a general picture of radiative effects (probability of 
radiation, level shifts) in a field of the configuration under consideration when a 
monochromatic wave has a circular polarisation. Let us now consider (M"') (given by 
(43)) in a number of extreme cases. 

When H/Ho <( 1, U = Aw/eH >> 1 we have a particle in the intense electromagnetic 
wave and a relatively weak magnetic field. In this case the main contribution in the 
integral (43) comes from the region of small x. Carrying out the corresponding 
expansions and retaining the terms linear with respect to l / v  (the expansion in H/Ho 
begins with quadratic terms) we get 

where A = wA/m2, and the variables y =AUT, v = u/(l - U )  are used. At U + 00 (45) is 
converted into an expression for the mean value of the mass operator in the intense, 
circularly polarised wave field (see, e.g., Baier et a1 1976, equation (2.30)); terms 1 / v  
represent the corrections owing to the presence of the magnetic field. 

In the case [<< 1 we have the description of processes in a magnetic field of 
arbitrary strength in the presence of a weak plane wave. Then, to obtain an explicit 
expression for (M'O'), it is necessary to make the following substitutions in equation 
(43): 

z + 2 0  + t2Z2, iQc - $0 + i@o (46) 

where 

2 2  = 21 R - sin y 1' + 8i sin p Re N + iZo@I - (2n + 1) H"Zo (k? 2; H sinp (47) 

for the remaining notation see (44). A term 20 in 2 (see (46)) describes radiative 
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effects in the magnetic field. After the division by a flux h/(Bo) the term 5 2 2 2  

substituted into equation (31) gives a total cross section for the Compton scattering in 
the magnetic field of arbitrary strength: 

4 a  1 e'% 
= -- m2A Im 6 f lo du exp(-isu2m2) ZZ2. 

The Compton effect has been discussed previously by De Raad et a1 (1974) who, 
within the framework of the Schwinger operator technique for a scalar particle in the 
magnetic field, succeeded in taking account of the interaction with the electromagnetic 
monochromatic wave propagated along a field H in a lower-order perturbation 
theory. Expression (48) obtained here is essentially more compact than that used by 
De  Raad et a1 (1974). 

In the case H/Ho<< 1 and v >> 1 it is possible to obtain an explicit expression for a 
cross section cr. Then the contribution in the integral (48) comes from the region of 
small x .  Carrying out the expansions we find, after the evaluation of the integrals, 

UH=- 1+- ln(l+2A) 
2 x c r 2 [ 2  2A 
m2Av A 1+2A A (  1) 

where 

Value uo coincides in its form with the cross section of Compton scattering of a scalar 
particle in the absence of a magnetic field if A = kp/m2; k, p are momenta of the 
photon and particle; CTH is the correction owing to the presence of a magnetic field. 
Averaging over polarisations of the photon (in the case of a linear polarisation as well) 
this correction vanishes. For this reason the latter does not appear in the work by De  
Raad et al (1974) where the case of unpolarised photons was considered. 

As has been noted already in the field configuration under consideration a 
resonant situation occurs when the field frequency coincides with the cyclotron 
frequency of a particle in the magnetic field; v = -1. We will consider this question in 
the case when H/Ho<< 1, Y - 1(A =holm2<< 1). Then the expression (M"') (see (43)) 
can be transformed into the following form: 

where 6 = 11 + V I .  



Radiative effects in plane wave moving along magnetic field 307 

For completeness let us give a value of the mean (9'"), (S3) if a circularly polarised 
monochromatic wave propagates along the magnetic field 

A m2+eH(2n + 1 )  v4m6 t 2 H 2  +-- 
2A5 S2HZ' 2 2 A  

( 9 0 )  = -+ 

(9 3> = (9') - A. 

The value (So> enters in the expression for the probability of radiation. 
The properties of the mean value of a mass operator in the vicinity of a resonance 

are of significant interest. It appears that these properties depend greatly on the 
degree of nearness to the resonance. Let us consider the value (M'O') (from ( 5 1 ) )  in 
the region where H&/Ho<< S 6 1 .  Then the main contribution in the integral over v in 
( 5  1 )  comes from the interval v << 1 .  Carrying out the corresponding expansions and 
evaluating the integral over v we find 

so that in this region the value (M'") is purely imaginary. In the limit [ + 0, with the 
procedure used to obtain equation (48), we have from ( 5 3 )  a cross section of the 
Thompson scattering of a circularly polarised wave in the magnetic field: 

In the region 6 d H(/Ho the main contribution in integral ( 5 1 )  comes from the 
region of small y. Expanding in the exponential function index over y and evaluating 
the integral we get 

where K = [H/SHo, K2/3 is the modified Bessel function of the third kind (Macdonald 
function), and the function L2/3 is determined in Baier et a1 (1973, p 1 8 1 ) .  

Let us give here asymptotic expansions of equation (55) (cf Baier et a1 1973 as 
well): 

K << 1 
(M"')=am2K(GK 8 

Let us discuss the results obtained. In the region where H&/Ho<< S S 1 we are 
relatively far from the resonance point; in particular, the resonant contribution in (So) 
(see (52)) is not yet dominant. When one approaches the resonance (as S is decreas- 
ing) the value l(M(o))[ becomes larger. The probability of radiation (see (31),  (52)) 
increases too. At S << 1 we have from (53): 

In the region where S 4 HfIHo we are quite near the resonance point. Then the mean 
value of a zero component of the kinetic momentum increases in a resonant manner as 
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S is decreased (see (52)), the resonant contribution in (So) dominating. Therefore, 
particle motion becomes quasi-classical. For this reason expression ( 5 5 )  coincides 
with the scalar particle mass operator calculated in a quasi-classical approximation 
(see Baier et a1 1973, p 188). However, instead of the characteristic parameter 
,y = H(So) /Hom a different one K = [H/SHo is included in (57). The mass operator 
increases as it approaches resonance (see (56)) but the radiation probability (31) 
decreases owing to the faster increase of the value of (9') in the denominator. 

Appendix 

Let us consider an operator exp(isS2) represented in the following form (cf appendix 
to Baier et a1 1976): 

(A.1) eisPa - - e is (a+b)  - - ~ ( ~ 1  eisb 

where 

a = ~ ~ - ~ ~ = ~ ~ ,  b=-($'q+S;)=S;. 

Differentiating (A. l )  with respect to s and multiplying the result on the left-hand side 
by L-' and on the right-hand side by e-isa e-isb we get 

where f(s)=eisab(q5)e-isa. We use variables 4 =xo-x3 ,  and ( = x o + x 3 ;  then 

9: = 4P€P+ (A.3) 

where p+ = i a/a4, pf = i d/a(. It is now obvious that elsa is the shift operator over a 
variable 4 so that 

f (s) = b ( B S ) ,  4 s  = 4 -4PEs. (-4.4) 

Let us write down an operator 911 in the form 911 = i all- e d ( q ) -  e a ( + )  = 7 ~ 1 1 -  ed(4 ) .  
Taking account of this and (A.4) it is possible to transform equation (A.2) into the 
following form: 

where the matrix form of notation is used, for example, d F 9  = dgFgUPv ,  

AIL (8) = e (4 ( 4 5 )  - 4 (4 1). (A.6) 

In deducing (AS)  the commutator [~ i ,  7qf] = -ieFik is taken into account. The 
solution of equation (AS) may be written as follows: 

1 1 

L = expjis I, A2(sy) dy) T'-'exp( -2is I, A(sy) e-2eFsyPll dy) (-4.7) 

where the symbol T(-)  denotes an anti-chronological product over 'time' y. The T(-) 
product included in (A.7) can be calculated explicitly since the commutator of opera- 
'tors in the index of the exponent is c-number (cf Baier et a1 1973, § 6.3). It is easy to 
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verify that: 

T(-) exp( 1’ B(s)  ds) 
0 

Substituting (AA) into (A.7) and then into (A.l) we get 
1 1 

exp(isB2) = exp( is I, A2(sy) dy) exp( -2is 1 A(sy) e-2eFsyB dy) 
0 

1 1 

X exp( 2is2 b dyl 5, dy28(y2- yl)A(syl) e2eFs(y2-y1)eFA(sy2)) 

x exp(is9;f ) exp(is9’: 1. 64.9) 
In what follows it is convenient to transform (A.9) into a form not containing linear 
terms over B. To this end let us use an expression 

exp[is (9 - 4 )?I 

1 

xexp ( -2iqs e-2cFsyB dy) exp(isBi). (A. 10) 

If we let ’ A(sy) e-2eFsy dy = b A(sy) e-2eFsy dy (Fes + eHs cotan eHs) q =qs= 

we arrive at the following representation for exp(isB2): 

1 

(A. 11) G e-2eFsy dY 

exp(isB2) = e@(‘) exp[is(B -qs$l exp(is9:) (A.12) 

where 
1 

@(s) = 2s2 I, 
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